Reifenberg flatness of free boundaries in obstacle problems with VMO ingredients
نویسندگان
چکیده
منابع مشابه
Obstacle Problems and Free Boundaries: an Overview
Free boundary problems are those described by PDEs that exhibit a priori unknown (free) interfaces or boundaries. These problems appear in Physics, Probability, Biology, Finance, or Industry, and the study of solutions and free boundaries uses methods from PDEs, Calculus of Variations, Geometric Measure Theory, and Harmonic Analysis. The most important mathematical challenge in this context is ...
متن کاملConvergence of free boundaries in discrete obstacle problems
We show that a piecewise linear finite element approximation of the obstacle problem gives an approximate free boundary converges, in an appropriate distance, to the free boundary of the continuous problemunder a stability condition on the obstacle.
متن کاملFree boundaries in optimal transport and Monge-Ampère obstacle problems
Given compactly supported 0 ≤ f, g ∈ L1(R), the problem of transporting a fraction m ≤ min{‖f‖L1 , ‖g‖L1} of the mass of f onto g as cheaply as possible is considered, where cost per unit mass transported is given by a cost function c, typically quadratic c(x,y) = |x − y|/2. This question is shown to be equivalent to a double obstacle problem for the Monge-Ampère equation, for which sufficient ...
متن کاملReifenberg Flatness and Oscillation of the Unit Normal Vector
We show (under mild topological assumptions) that small oscillation of the unit normal vector implies Reifenberg flatness. We then apply this observation to the study of chord-arc domains and to a quantitative version of a two-phase free boundary problem for harmonic measure previously studied by Kenig-Toro [KT06].
متن کاملInterior regularity of obstacle problems for nonlinear subelliptic systems with VMO coefficients
This article is concerned with an obstacle problem for nonlinear subelliptic systems of second order with VMO coefficients. It is shown, based on a modification of A-harmonic approximation argument, that the gradient of weak solution to the corresponding obstacle problem belongs to the Morrey space [Formula: see text].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2014
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-014-0772-3